Financial Markets I

Lecture 7: Valuation of Stocks

Master Finance & Strategy

Spring 2018

Overview of Lecture 7

Big question: How to value a stock?

- 1. Valuation Formulas.
- 2. Obtaining the Formula Inputs.
- 3. Stock Valuation in Practice.
- 4. Interpreting and Using Valuation Results.
- 5. Tools for Valuation Analysis (Valuation Ratios and PVGO).

1. Valuation Formulas

- Consider a stock which pays annual dividends.
- Dividend in year t = 0, 1, ... is D_t .
- The "ex-dividend" price in year t is P_t .
 - This is the stock price immediately after dividend D_t has been paid.
- Valuing the stock at t = 0 consists in determining P_0 .

Price and Expected Return

• The rate of return on the stock between years 0 and 1 satisfies

$$1+R=\frac{D_1+P_1}{P_0}.$$

• Expected return is such that

$$1 + E(R) = \frac{E(D_1) + E(P_1)}{P_0}$$

• Taking E(R) as given, we can solve for P_0

$$P_0 = rac{E(D_1) + E(P_1)}{1 + E(R)}.$$

Back to the Present Value Rule

• Setting r = E(R), we have

$$P_0 = \frac{E(D_1) + E(P_1)}{1 + r}$$

Interpretation: Price P_0 is the Present Value (PV) of expected cashflows, discounted at a risk-adjusted rate.

- Expected cashflows are
 - the expected dividend $E(D_1)$,
 - the expected "ex-dividend" price $E(P_1)$.
- The **risk-adjusted rate** is given by the expected return *r*.
 - ► This is the level of expected return required by market participants.
- To simplify notations, we will denote $E(D_t)$ by D_t , and $E(P_t)$ by P_t .

Iterating Once

• Equation for the initial stock price *P*₀:

$$P_0=\frac{D_1+P_1}{1+r}.$$

- *P*₀ depends on *P*₁.
 ⇒ Our valuation analysis is incomplete.
- Repeating our analysis at t = 1, and assuming that the expected return between years 1 and 2 is also r, we get

$$P_1=\frac{D_2+P_2}{1+r}.$$

• Plugging back into the formula for P_0 :

$$P_0 = \frac{D_1}{1+r} + \frac{1}{1+r}\frac{D_2 + P_2}{1+r} = \frac{D_1}{1+r} + \frac{D_2}{(1+r)^2} + \frac{P_2}{(1+r)^2}$$

Multiple Iterations

• If we keep iterating, we get

$$P_0 = \frac{D_1}{1+r} + \frac{D_2}{(1+r)^2} + \dots + \frac{D_T}{(1+r)^T} + \frac{P_T}{(1+r)^T}.$$

- P_0 now depends on P_T .
- Assumption ("No-bubble"): We assume that the stock price does not grow too fast in the far distant future, so that

$$\frac{P_T}{(1+r)^T} \xrightarrow[T\to\infty]{} 0.$$

 Taking the limit as T → ∞, we find that the initial stock price P₀ is driven only by the infinite sequence of cashflows (dividends).

A General Valuation Formula

• Under the no-bubble assumption, we get

$$P_0 = \frac{D_1}{1+r} + \frac{D_2}{(1+r)^2} + \frac{D_3}{(1+r)^3} + \cdots$$
$$= \sum_{t=1}^{\infty} \frac{D_t}{(1+r)^t}.$$

• In words:

Price of a stock is PV of expected dividends discounted at the stock's expected return.

Special Case: Constant Growth Model

• Assume that expected dividends grow at a constant rate g < r,

$$D_t=D_{t-1}(1+g).$$

• General valuation formula becomes

$$P_0 = \frac{D_1}{1+r} + \frac{D_1(1+g)}{(1+r)^2} + \dots + \frac{D_1(1+g)^{T-1}}{(1+r)^T} + \dots$$

 $\bullet\,$ Using the growing perpetuity formula from Lecture 1, we get

$$P_0 = \frac{D_1}{r-g}$$

• This is the constant growth valuation formula.

2. Obtaining the Formula Inputs

- We will use the constant growth formula for stock valuation.
- The inputs we need are:
 - Expected dividend in year 1, D_1 .
 - ▶ Dividend growth rate g.
 - ► Expected return *r*.

Dividends

- Estimates of D_1 can be obtained from financial sources.
- Two alternative estimates of g:
 - ► Historical growth.
 - ▶ Forecasted growth.

Historical and Forecasted Growth

- Historical growth:
 - ▶ Dividend growth rate in year t is

$$g_t = \frac{D_t - D_{t-1}}{D_{t-1}}$$

- ► Historical growth rate is obtained as the sample average of dividend growth rates over past sample period.
- Forecasted growth:
 - Provided by financial analysts.

Expected Return

• An estimate of expected return can be obtained from the CAPM:

$$r = R_f + \mathsf{MRP} \times \beta,$$

where

- ▶ R_f is the riskless rate,
- β is the stock's beta,
- MRP is the market risk premium (expected excess return of market portfolio).
- Remark: the CAPM estimate typically differs from the sample average of the stock's past realized returns.

Riskless Rate and Beta

- Riskless rate: typically the one-month T-bill rate.
- Estimates of beta can be obtained from:
 - ▶ Financial sources.
 - Regression.

Market Risk Premium Estimates

- Using sample averages of realized returns.
 - ▶ e.g., the 1926-2013 sample averages for large stocks and T-bills in the U.S. are 12.1% and 3.5%, respectively.
 - ▶ Estimate of MRP is 8.6%.
- Using constant growth model for the *aggregate* stock market.
 - ▶ See Section 5.
 - The aggregate U.S. stock market valuation implies an estimate of the MRP around 4% (this estimate varies over time).
- We will use the second estimate in the following valuation exercise.

3. Valuation in Practice

We are back in 2001. We have to value the stocks of two companies:

• Duke Energy (DUK)

Holding company for Duke Power Company, which supplies electricity to 2 million customers in North and South Carolina. Market capitalization is \$30 billion.

• Anheuser Busch (BUD)

The world's largest brewer (owns Budweiser). Also theme park operator, and manufacturer and recycler of aluminum beverage containers. Market capitalization is \$39.1 billion.

For each of stock, we use analyst reports issued at the beginning of 2001.

• Source: Valueline, February & March 2001.

Dividends

Estimate of D_1 : Forecasted dividend for 2001.

Company	D_1
Duke Energy	1.10
Anheuser Busch	0.66

Dividend Growth Rate

• Historical growth: 5-yr average 1996-2000.

Company	Historical Growth
Duke Energy	1.94%
Anheuser Busch	8.79%

• Forecasted growth:

$$1.10 imes (1+g_{ extsf{duk}})^5 = 1.30.$$

 $0.64 imes (1+g_{ extsf{bud}})^4 = 0.78.$

Company	Forecasted Growth
Duke Energy	3.40%
Anheuser Busch	5.07%

• The two estimates can differ substantially. We will focus on forecasted growth.

Lecture 7: Valuation of Stocks

Expected Return

Assume

- One month T-bill rate: 4%.
- Market risk premium: 4%.

Company	Beta	Expected Return
Duke Energy	0.55	6.20%
Anheuser Busch	0.70	6.80%

Valuation

Restating the relevant input data:

Company	D_1	Historical Growth	Forecast Growth	Expected Return
Duke	1.10	1.92%	3.40%	6.20%
Anheuser	0.66	8.79%	5.07%	6.80%

Prices implied by Constant Growth Model vs. Actual Prices:

	Prices Based on			
Company	Historical Growth	Forecasted Growth	Actual Price	
Duke Energy	25.70	39.25	40.75	
Anheuser Busch	N/A	38.15	43.36	

- Historical growth: Model-implied prices are quite different from actual prices or not even well-defined (because g > r).
- Forecasted growth: Model-implied prices are quite close to the actual ones.

4. Interpreting and Using Valuation Results

- Under the forecasted growth estimate, the model-implied prices of the two stocks are lower than the actual prices.
- Does this mean that we should short the stocks?
- More generally, how should we interpret and use valuation results?

Reminder: Bond Valuation & Arbitrage

- If actual (market) price of a bond is different than our theoretical price, we can construct an arbitrage.
- We are very confident about our bond valuation results because
 - ▶ cashflows are certain,
 - ▶ discount rates are given by the term structure of riskfree interest rates.

Stock Valuation & Arbitrage

- For stock valuation, we have to use estimates for
 - ▶ cashflows, since future dividends are unknown
 - ▶ discount rates, since the fair adjustment for risk is not known.
- We also made one extra assumption:
 - ▶ constant dividend growth rate.
- Therefore, our stock valuation results may be quite imprecise.
- If actual price of a stock is different than our theoretical price:
 - ▶ It may be because we, and not the market, are wrong.
 - ▶ Not a good basis for constructing an arbitrage.

Using Stock Valuation Results

- Although our results may be quite imprecise, they are still useful.
- Uses:
 - ▶ Value assets which are not traded in the market. (IPOs, spinoffs, etc.)
 - ► Understand what assumptions (on growth rates, market risk premium, etc) the market makes to value stocks.
 - ► Trade, but only if we disagree with these assumptions very strongly.

5. Tools for Valuation Analysis

- Dividend yield (D/P).
- Price-earnings ratio (P/E).
- Present value of growth opportunities (PVGO).

Dividend Yield

• The dividend yield of a stock is

$$\frac{D_0}{P_0}$$

• The constant growth formula implies that

$$P_0 = rac{D_0(1+g)}{r-g} \quad \Rightarrow \quad rac{D_0}{P_0} = rac{r-g}{1+g}.$$

• We can approximate this by

$$\frac{D_0}{P_0}\approx r-g.$$

- To evaluate the discrepancy between actual price of a stock and our theoretical price, we can compare
 - ▶ Left-hand side (actual dividend yield),
 - ▶ Right-hand side (using our estimates for *r* and *g*).

Example

• For our companies:

Company	D_0	P_0	Dividend Yield	Expected Return	Forecasted Growth	$\frac{\text{Difference}}{r-g}$
Duke	1.10	40.75	2.70%	6.20%	3.40%	2.80%
Anheuser	0.64	43.36	1.48%	6.80%	5.07%	1.73%

• Actual dividend yields are quite close to the model-predicted ones.

Application: US Stock Market Valuation

- S&P500, April 2001:
 - Dividend yield (April 6, 2001): D/P = 1.38%.
 - Riskless rate: $R_f = 4\%$.
 - Expected return: r = 4% + 4% = 8%.
 - Dividend growth rate: g = 5%.
- Large discrepancy between D/P and r g.
- Three possibilities:
 - ▶ true g is higher: Maybe (g was computed based on historical growth).
 - ▶ r is lower: Maybe MRP has declined?
 - ▶ Market was overvalued (*P* simply too high): Possible...

Aggregate Dividend Yield in the US, 1880-2017

Source: Robert Shiller (Yale University).

Lecture 7: Valuation of Stocks

5. Tools for Valuation Analysis

Price-Earnings Ratio

• The price-earnings ratio of a stock is

$$P/E = \frac{P_0}{EPS_1},$$

where EPS denotes earnings per share.

- P/E ratio is a "normalized" measure of a stock's valuation.
 - ▶ Price is expressed as a multiple of "fundamental".
 - ▶ Typically between 5 and 25.
- Although similar companies may have very different price per share, they should have similar P/E ratios (same applies to dividend yield).
- W. Buffett's viewpoint: "With P/E ratios, small is beautiful!"

Example

• For our companies:

Company	P_0	EPS_1	P/E
Duke Energy	40.75	2.35	17.34
Anheuser Busch	43.36	1.90	22.82

• Firms whose stocks have high P/E typically have high growth opportunities (holding all else equal).

Present Value of Growth Opportunities

- The present value of growth opportunities captures the "part" of a stock's price which is due to the firm's growth opportunities.
- Consider a firm entirely financed by equity (i.e., no debt).
- In the absence of growth opportunities, the firm does not invest.
 - ▶ (Expected) earnings are constant over time.
 - ► Earnings are entirely paid out as dividends (no 'retained' earnings).
- Therefore, we can define a "no-growth" price by

No-Growth Price =
$$\frac{EPS_1}{r}$$
.

• The present value of growth opportunities (PVGO) is defined by

$$PVGO = Price - No-Growth Price.$$

Example

• For our companies:

Company	EPS_1	r	No-Growth Price	Actual Price	PVGO
Duke Energy	2.35	6.20	37.90	40.75	2.85
Anheuser Busch	1.90	6.80	27.94	43.36	15.42